FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong


Below Information is provided by the Higher Insitutions signed MoU with CIC.



Date: From


Institution Title Type Date Author(s) Abstract Link
HKUST Construction Planning of Prefabricated Units Leveraging BIM and Resource Leveling Techniques FYP 06/2018 WONG, Kok Yiu
YEUNG, Ching Hei
As a compact city with limited amount of available land and vast population, Hong Kong is currently facing the massive demand for housing. This phenomenon has been driving the construction industry to enhance the productivity of construction projects, particularly for residential buildings. In recent years, the Hong Kong government has been investigating the feasibility of Modular Integrated Construction (MIC). MIC refers to a construction method where volumetric modules are prefabricated in factories and then assembled at a construction site to form a building. The productivity of this method has been demonstrated by numerous projects in foreign countries, such as Singapore and China. In view of the proven benefits of MIC, the Hong Kong government has proposed three pilot projects recently, which will adopt MIC to construct resident buildings. However, the local industry possesses insufficient experience in managing this kind of construction projects. This report presents an optimization framework, which integrates Genetic Algorithm (GA) and Building Information Modeling (BIM) to perform resource leveling based on constraints of a MIC project. An illustrative case demonstrates the functionalities of GA and BIM in optimizing the schedule of a MIC project. The proposed framework aims to provide the industry practitioners with a general guideline for scheduling a MIC project. N.A.
HKUST Optimizing lift operations and vessel transport schedules for disassembly of multiple offshore platforms using BIM and GIS Journal 06/2018 Tan, Y., Song, Y., Zhu, J., Long, Q., Wang, X., and Cheng, J.C.P. As the coming decades will witness a big trend in the decommissioning of offshore platforms, simultaneously disassembling topsides of multiple offshore platforms is getting increasingly common. Considering high risk and cost of offshore operations, module lift planning among multiple offshore platforms with transport vessels is required to be carefully conducted. The lift planning usually contains two main parts: module layout on vessels planning and vessel transport schedules arrangement. In contrast to the current experience-driven module lift planning, this paper formulates the lift planning optimization problem and develops a web system integrating building information modeling (BIM) and geographical information system (GIS) to efficiently disassemble topsides for multiple offshore platforms. BIM provides detailed information required for planning module layout on vessels and GIS contains the management and analysis of geospatial information for the vessel transport schedule arrangement. As for module layout optimization, three heuristic algorithms, namely genetic algorithm (GA), particle swarm optimization (PSO), and firefly algorithm (FA) are implemented and compared to obtain the module layout with the minimum total lift time. While for vessel transport schedule, graph search technique is integrated with a developed schedule clash detection function to obtain the transport schedule with the minimum sailing time. The proposed optimization algorithms and techniques are integrated into a developed BIM/GIS-based web system. An example of three offshore platforms with eighteen modules in total is used to illustrate the developed system. Results show that the developed system can significantly improve the efficiency of lift planning in multiple topsides disassembly. The developed BIM/GIS-based web system is also effective and practical in the resource allocation and task assignment among multiple locations, such as construction sites, buildings, and even cities. Link
HKUST Modeling of the indoor/outdoor exchange of air pollutants for the selected building with the aid of building information modeling technology FYP 06/2018 CHAN, Chun Tat
LUI, Kin Leung
TANG, Chloe
As with many other metropolitan cities, air pollution is an acute problem in Hong Kong; by affecting the health of its citizens, it affects the health care system and thus imposes economic burden. In 2015, air pollution led to 2,100 premature deaths and a resultant economic loss of HKD 27 billion. While people’s exposure to air pollutants differs in location and their respective activities, the critical occasions when they are exposed to the greatest amount of air pollutants remain ambiguous. Authorities have been attempting to tackle this problem by scrutinising big data to provide real-time estimations of individuals’ exposure to key air pollutants. A crucial element that enables such technology is the capability of obtaining the pollutant concentrations of different indoor-microenvironments based on the outdoor air quality. This paper reports an ongoing study on the simulation of the indoor/outdoor exchange of air pollutants with the aid of Building Information Modelling technology (BIM), followed by computational fluid dynamics simulations. The Exchange Tower in Kowloon Bay was selected as representative of a typical Hong Kong office building; its daily operation and building systems were analysed and evaluated. The results revealed that indoor environments can be described by their temperature and flow fields, which are highly related. The interdependency of these two variables means that the flow field can be derived once sufficient information on the temperature field can be gathered. This is crucial as the dispersion of air pollutants greatly depends on the characteristic of the flow field. In terms of buildings’ operation and management, a properly designed, well-mixed air distribution system was found to be effective in reducing local concentration of inert air pollutants. It was also energy efficient whilst providing comfort to the building occupants. This implies that regulations on improving building systems and monitoring the resulting indoor air quality could reduce people’s exposure to air pollutants and thereby alleviate the associated impacts and their corollaries. N.A.
HKUST Semi-automated generation of parametric BIM for steel structures based on terrestrial laser scanning data Journal 01/2020 Yang, L., Cheng, J.C.P., and Wang, Q. As-built building information models (BIMs) are increasingly needed for construction project handover and facility management. To create as-built BIMs, laser scanning technology has gained popularity in the recent decades due to its high measurement accuracy and high measurement speed. However, most existing methods for creating as-built BIMs from laser scanning data involve plenty of manual work, thus becoming labor intensive and time consuming. To address the problems, this study presents a semi-automated approach that can obtain required parameters to create as-built BIMs for steel structures with complex connections from terrestrial laser scanning data. An algorithm based on principal component analysis (PCA) and cross-section fitting techniques is developed to retrieve the position and direction of each circular structural component from scanning data. An image-assisted edge point extraction algorithm is developed to effectively extract the boundaries of planar structural components. Normal-based region growing algorithm and random sample consensus (RANSAC) algorithm are adopted to model the connections between structural components. The proposed approach was validated on a bridge-like steel structure with four different types of structural components. The extracted as-built geometry was compared with the as-designed geometry to validate the accuracy of the proposed approach. The results showed that the proposed approach could efficiently and accurately extract the geometry information and generate parametric BIMs of steel structures. Link
HKUST Automatic Generation of BIM Models Based on Photogrammetry and Laser Scanning Point Cloud Data FYP 06/2019 LEUNG, Chi Ching
SONG, Changhao
As-built drawings are essential to provide information about the most updated configuration of a facility or a structure for project delivery and facility management. Yet, it is stated that approximately 55% of the as-built drawings was found mismatching with the updated configuration of the building, incurring an additional cost of $4.8 billion for verification of the as-built drawings. This paper aims to develop a more advanced method towards automated generation of BIM model using point cloud data from laser scanning based on that developed previously by our research team, reducing labour, cost and time consumed in modelling processes. Geometry information extraction was conducted to each category of the point cloud data with the aim to obtain parameters for automated parametric modelling using Dynamo command networks. The proposed approach was validated by successfully generating as-built Revit models for 3 different sites. N.A.
HKUST Developing an BIM and Augmented Reality-based Framework for Construction Monitoring and Facility Management FYP 06/2018 CHIU, San Fung
KWOK, Wai Shing
Augmented reality (AR) is an innovative technology, which allows the real-world environment to be augmented by virtual information. In construction industry, the mobile accessibility of building information through building information modelling (BIM) is still limited, a practical AR system with the integration of building information modelling (BIM) to realize real-time collaboration is yet to be developed. In addressing this gap, this project developed an integrated Augmented Reality (AR) and Building Information Modeling (BIM) framework to achieve the real-time collaboration in construction monitoring and facility management. The function of the developed framework is shown in two scenarios about pipe repairing tutorial and real-time collaboration on remoting computer and mobile device. N.A.