資源
香港專上院校所提供之論文/研究刊物
院校 | 題目 | 類型 | 日期 | 作者 | 摘要 | 網頁 |
---|---|---|---|---|---|---|
HKU | Is Building Information Modelling (BIM) a Tool or a Substitute to Quantity Surveyors? | Thesis | 04/2015 | FU Ka Chun | -- | N.A. |
HKUST | Social BIMCloud: A distributed cloud-based BIM platform for object-based lifecycle information exchange | Journal | 03/2015 | Das, M., Cheng, J.C.P., and Kumar, S. | Background The architecture, engineering and construction (AEC) industry lacks a framework for capturing, managing, and exchanging project, product, and social information over the lifecycle of a building. The current tools have various limitations, such as lack of interoperability, slow to transfer huge building model files, and possibility of data inconsistency. Methods In this paper, we present a cloud-based BIM server framework namely Social BIMCloud that facilitates BIM information exchange through dynamic merging and splitting of building models. The data model of Social BIMCloud is based on but not limited to IFC. The data model of Social BIMCloud was further extended to accommodate social interactions, by studying the formal modes of communication in the AEC industry. An object-based approach to capture and manage social interactions in AEC projects through a BIM-based visual user interface was also developed and demonstrated. Results Social BIMCloud addresses the issues of inefficient data transfer speed and data inconsistency in a distributed environment by facilitating the storage and partial exchange of integrated nD BIM models. Data interoperability is facilitated through open BIM standards such as IFC and direct integration with construction software. High performance, scalability, fault tolerance, and cost effectiveness are facilitated through data partitioning, data replication strategies, multi-node structures, and pay-per-use tariff systems, respectively, through a cloud-based NoSQL database. Conclusion The Social BIMCloud framework helps to develop and exchange BIM models, which are rich in project information such as social interactions, cost, and energy analyses. This framework improves the communication efficiency between project participants, leading to better designs and less rework. The information captured by this framework could also be useful to determine important metrics such as industry trends, relationships among project participants, and user requirements. |
連結 |
HKUST | Mapping BIM schema and 3D GIS schema semi-automatically utilizing linguistic and text mining techniques | Journal | 01/2015 | Cheng, J.C.P., Deng, Y.C., and Anumba, C. | The interoperability between BIM (Building Information Modeling) and 3D GIS (Geographic Information System) can enhance the functionality of both domains. BIM can serve as an information source for 3D GIS, while 3D GIS could provide neighboring information for BIM to perform view analysis, sustainable design and simulations. Data mapping is critical for seamless information sharing between BIM and GIS models. However, given the complexity of todayÕs BIM schemas and GIS schemas, the manual mapping between them is always time consuming and error prone. This paper presents a semi-automatic framework that we have developed to facilitate schema mapping between BIM schemas and GIS schemas using linguistic and text-mining techniques. Industry Foundation Classes (IFC) in the BIM domain and City Geography Markup Language (CityGML) in the GIS domain were used in this paper. Entity names and definitions from both schemas were used as the knowledge corpus, and text-mining techniques such as Cosine Similarity, Market Basket Model, Jaccard Coefficient, term frequency and inverse document frequency were applied to generate mapping candidates. Instance-based manual mapping between IFC and CityGML were used to evaluate the results from the linguistic-based mapping. The results show that our proposed name-to-definition comparison could achieve a high precision and recall. Results using different similarity measures were also compared and discussed. The framework proposed in this paper could serve as a semi-automatic way for schema mapping of other schemas and domains. | 連結 |
HKUST | A framework for dimensional and surface quality assessment of precast concrete elements using BIM and 3D laser scanning | Journal | 08/2014 | Kim, M.-K., Cheng, J.C.P., Sohn, H., and Chang, C.-C. | This study presents a systematic and practical approach for dimensional and surface quality assessment of precast concrete elements using building information modeling (BIM) and 3D laser scanning technology. As precast concrete based rapid construction is becoming commonplace and standardized in the construction industry, checking the conformity of dimensional and surface qualities of precast concrete elements to the specified tolerances has become ever more important in order to prevent failure during construction. Moreover, as BIM gains popularity due to significant developments in information technology, an autonomous and intelligent quality assessment system that is interoperable with BIM is needed. The current methods for dimensional and surface quality assessment of precast concrete elements, however, rely largely on manual inspection and contact-type measurement devices, which are time demanding and costly. In addition, systematic data storage and delivery systems for dimensional and surface quality assessment are currently lacking. To overcome the limitations of the current methods for dimensional and surface quality assessment of precast concrete elements, this study aims to establish an end-to-end framework for dimensional and surface quality assessment of precast concrete elements based on BIM and 3D laser scanning. The proposed framework is composed of four parts: (1) the inspection checklists; (2) the inspection procedure; (3) the selection of an optimal scanner and scan parameters; and (4) the inspection data storage and delivery method. In order to investigate the feasibility of the proposed framework, case studies assessing the dimensional and surface qualities of actual precast concretes are conducted. The results of the case studies demonstrate that the proposed approach using BIM and 3D laser scanning has the potential to produce an automated and reliable dimensional and surface quality assessment for precast concrete elements. | 連結 |
HKUST | A BIM-based web service framework for green building energy simulation and code checking | Journal | 06/2014 | Cheng, J.C.P., and Das, M. | Green building design has been a major trend in the last decade which has largely affected the AEC industry. As of 2013, for example, there were over 13,000 green buildings certified with LEED (Leadership in Energy and Environment Design) in the United States alone. Building Information Modeling (BIM) technolo- gy and computer simulations are adopted largely for green building design. However, while information sharing and automated, collaborative design review are important for the design of green buildings, the current way of BIM-based green building design relies mainly on individual file transfer and does not support collaboration in the distributed environment of construction projects. On the other hand, as the Internet becomes ubiquitous, the web provides convenient and cost-efficient means for multi-location cross-organizational collaboration. Energy analysis and validation against standard building codes are two major processes in green building design evaluation. This paper presents a modular web service based framework which integrates the information necessary for green building design, automates the building design evaluation processes, and facilitates simple updates on the building model on a common but distributed platform. This framework is based on BIM data models like gbXML (Green Building XML) which contain information for green building design like geometry of the building, material, and sensor information from more than one source. The BIM data models act as a single source of building information for all processes. Building design evaluation and updating are iterative in green building design and require information and inputs dispersed among various project participants. Since our framework follows a distributed architecture and is easily accessible from the Internet, it makes the information required to facilitate the iterative process and its results conveniently available to a multi-participant environment. The paper also presents an example scenario demonstrating the developed framework. | 連結 |
HKUST | Integration of BIM and GIS for City Planning | Report | 06/2014 | LI Zhi | With the popularity of 3D digital maps for computers and mobile phones, the development of 3D city models has grown substantially in the last decades. 3D maps can not only support navigation, but also allow people to perform city planning and architectural and engineering designs with the consideration of the surrounding environment. Moreover, many other advanced applications have been studied to be equipped in 3D models, like disaster management, noise and pollutant diffusion analysis and so on. Earliest research on 3D digital city models was in 1990s and now there are about a total number of 1252 3D digital city models worldwide already. Since the early 1990’s, lots of researchers have conducted studies in creation, application and maintenance of 3D city models. The study results indicate that the modeling construction techniques and application exploitability has improved significantly in last decades. However, the level of development of existing models varies widely in view of geographic locality (either city or country), creation time and many other factors. A standardized evaluation framework of the existing 3D city models is still in need. Based on the purpose of setting up an evaluation framework, this review work was conducted. Mainly through literature review and searching on project websites, we collected original sources of more than 70 projects of 3D city models and 23 are chosen for detailed study and analysis. These city models are mainly categorized in four continents (North America, Europe, Asia and Oceania) and in four aspects (model coverage, modeling technology, application and maintenance). To the point, a preliminary model estimation method is created, considering the maturity of five aspects during modeling procedures, i.e. data capturing, data processing, data storing and managing, data presenting and data updating. According to the evaluation framework, city models can be categorized into four maturity levels as 3D GIS as a Scene, 3D GIS as a Service, 3D GIS as an Infrastructure and 3D GIS as a Platform. Finally, based on the analysis results, some limitations of 3D city models in current situation are summarized, and recommendations of possible resolutions are presented correspondingly. |
N.A. |