FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong

Keyword

Below Information is provided by the Higher Insitutions signed MoU with CIC.

Institution

Type

Date: From

To

Institution Title Type Date Author(s) Abstract Link
HKUST A semi-automated approach to generate 4D/5D BIM models for evaluating different offshore oil and gas platform decommissioning options Journal 07/2017 Cheng, J.C.P., Tan, Y., Song, Y., Liu, X., and Wang, X. Background
Offshore oil and gas platforms generally have a lifetime of 30 to 40 years, and platform decommissioning is a major issue because many of the existing offshore oil and gas platforms are reaching the end of their service life. There are many possible options for decommissioning offshore oil and gas platforms, and each decommissioning option can be implemented using different methods and technologies. Therefore, it is necessary to have a clear understanding and in-depth evaluation of each decommissioning option before commencing platform decommissioning. 4D and 5D building information modeling (BIM) has been commonly used in the building industry to analyze constructability and to evaluate different construction or demolition plans. However, application of BIM in the oil and gas industry, especially for the platform decommissioning process, is still limited.
Methods
This paper suggests and demonstrates the application of 4D and 5D BIM technology to simulate various methodologies to realize various selected offshore platform decommissioning options, thereby visualizing and evaluating different options, considering both the time and resources required for decommissioning process. One hundred and seventy-seven offshore platform decommissioning options are summarized in this paper. A new approach to create multiple 4D/5D BIM models in a semi-automated manner for evaluating various scenario options of OOGP decommissioning was proposed to reduce the model creation time as current way of 4D/5D BIM model creation for each OOGP decommissioning option is time consuming.

Results
In the proposed approach, an OOGP BIM model relationship database that contains possible 4D/5D BIM model relationships (i.e. schedules for different decommissioning methods) for different parts of an OOGP was generated. Different OOGP decommissioning options can be simulated and visualized with 4D/5D BIM models created by automatically matching schedules, resources, cost information and 3D BIM models. This paper also presents an illustrative example of the proposed approach, which simulates and evaluates two decommissioning options of a fixed jacket platform, namely Rig-to-Reef and Removal-to-Shore. As compared to the traditional approach of 4D/5D BIM model generation, the proposed semi-automated approach reduces the model generation time by 58.8% in the illustrative example.

Conclusions
The proposed approach of semi-automated 4D/5D BIM model creation can help understand the implication of different decommissioning options as well as applied methods, detecting potential lifting clashes, and reducing 4D/5D BIM model creation time, leading to better planning and execution for the decommissioning of offshore oil and gas platforms. In addition, with the proposed semi-automated approach, the 4D/5D BIM model can be generated in a more efficient manner.
Link
HKUST Automated Optimization and Clash Resolution of Steel Reinforcement in RC Frames Using Building Information Modeling and Hybrid Genetic Algorithm Thesis 08/2017 Mohit MANGAL Reinforced concrete (RC) is widely used in building construction. Steel reinforcement design for RC frames is a necessary and important task for designing RC building structures. Currently, steel reinforcement design is performed manually or semi-automatically with the aid of computer software. These methods are error-prone, time-consuming, and sometimes resulting in over-design or under-design. In addition, clashes of steel reinforcement bars are rarely considered during the design stage and they often occur in beam-column joints on site nowadays. Additional time and manpower are often needed to resolve these clashes in an ad-hoc manner. Sometimes, it is impossible to resolve clashes without moving the steel reinforcement bars and redesigning steel reinforcement layout. Therefore, this research aims to develop a framework for automating the steel reinforcement design process for RC frames using the building information modelling (BIM) technology. BIM has been increasingly popular in the architecture, engineering and construction (AEC) industry for some years, but its use in structural design is still limited to extracting construction design and clash detection. However, BIM models provide much geometric and functional information and can be used for steel reinforcement optimization and clash resolution as well.

This research presents an automated steel reinforcement optimization framework with modified version (considering clash resolution) based on the BIM technology. The first framework uses information from a BIM model to intelligently suggest the number, size and arrangement of three types of steel reinforcement (i.e., tensile, compressive, and shear) with minimum steel reinforcement area. The framework uses the developed hybrid Genetic Algorithm-Hooke and Jeeves (GA-HJ) approach to optimize the steel reinforcement according to the loading conditions, end-support conditions and geometry of the RC member (RC beam or RC column). The developed GA-HJ approach increases the efficiency as well as the quality of the optimum solutions. The modified version of the framework is then developed to utilize and integrate the 3D spatial information of RC frame from a BIM model to provide clash-free and optimized steel reinforcement design. The modified framework uses a two-stage GA approach to provide clash-free, optimized, constructable, and design code compliant steel reinforcement design. Overall, the developed frameworks provide fast and error-free steel reinforcement design with the minimum area of steel reinforcement when compared with currently available steel reinforcement design approaches. In addition, the developed GA-HJ approach can be modified and used to support other building design optimization problems in future.
N.A.
HKUST Automated Quality Assessment of Precast Concrete Elements Using 3D Laser Scan Data Thesis 08/2017 Qian WANG Precast concrete elements are popularly adopted in buildings and civil infrastructures like bridges because they provide well-controlled quality, reduced construction time, and less environmental impact. To ensure the performance of complete precast concrete structures, individual precast concrete elements must be cast according to the as-designed blueprints. Any inconsistency between the as-built and as-designed dimensions can result in assembly difficulty or structure failure, causing delay and additional cost. Therefore, it is essential to conduct geometry quality assessment for precast concrete elements before they are shipped to the construction sites. Currently, the quality assessment of precast concrete elements is still relying on manual inspection, which is time-consuming and labor-intensive. Besides, due to tedious work, manual inspection is also error-prone and unreliable. Thus, automated, efficient, and accurate approaches for geometry quality assessment of precast concrete elements are desired. Nowadays, 3D laser scanning has been widely applied to the quality assessment of buildings and civil infrastructures because it can acquire 3D range measurement data at a high speed and high accuracy. However, existing research of laser scanning based quality assessment is mainly focused on simple-geometry elements, such as straight columns and rectangular concrete surfaces. There has been limited research on the quality assessment of precast concrete elements with complex shapes. To tackle the limitations of existing research, this research aims to develop automated, efficient, and accurate techniques for the geometry quality assessment of precast concrete elements using 3D laser scan data. The geometry quality assessment includes dimensional quality assessment, surface flatness and distortion assessment, and rebar position assessment.

For dimensional quality assessment, a dimensional quality assessment technique focusing on the side surfaces of precast concrete panels is developed. This technique aligns the laser scan data with the as-designed building information model (BIM), and extracts the as-built dimensions of the elements. Furthermore, an improved dimensional quality assessment and as-built BIM creation technique is developed to inspect the entire precast concrete element, rather than a surface only, and to automatically create a BIM model for storing the as-built dimensions for better visualization and management. As a supporting study, a novel mixed pixel filter is developed to remove noise data namely mixed pixels from raw laser scan data and to improve the dimension estimation accuracy. The proposed mixed pixel filter formulates the locations of mixed pixels, based on which the optimal threshold value is obtained to classify scan data into mixed pixels and valid points. Another supporting study is to investigate the influence factors for edge line estimation accuracy. Four influence factors are identified and the effect of each factor is analyzed based on numerical simulations. Implications are eventually suggested based on the analysis.

For surface flatness and distortion assessment, the developed technique identifies a few measures for both surface flatness and distortion. These measures are then automatically calculated from the laser scan data of the precast concrete surface for surface quality assessment. Furthermore, an automated rebar position estimation technique is developed to estimate the rebar positions for rebar positioning quality assessment. The technique can recognize individual rebars from the laser scan data of reinforced precast concrete elements and accurately estimate the rebar positions.

This research provides automated approaches for the quality assessment of precast concrete elements, which are able to greatly save the labor cost and time for quality assessment. In addition, the quality of precast concrete structures can be improved due to the faster and more economical quality assessment, thereby further promoting the adoption of precast concrete elements in the construction industry.
N.A.
HKUST Trends and opportunities of BIM-GIS integration in the architecture, engineering and construction industry: A review from a spatio-temporal statistical perspective Journal 12/2017 Song, Y., Wang, X., Tan, Y., Wu, P., Sutrisna, M., Cheng, J.C.P., et al. The integration of building information modelling (BIM) and geographic information system (GIS) in construction management is a new and fast developing trend in recent years, from research to industrial practice. BIM has advantages on rich geometric and semantic information through the building life cycle, while GIS is a broad field covering geovisualization-based decision making and geospatial modelling. However, most current studies of BIM-GIS integration focus on the integration techniques but lack theories and methods for further data analysis and mathematic modelling. This paper reviews the applications and discusses future trends of BIM-GIS integration in the architecture, engineering and construction (AEC) industry based on the studies of 96 high-quality research articles from a spatio-temporal statistical perspective. The analysis of these applications helps reveal the evolution progress of BIM-GIS integration. Results show that the utilization of BIM-GIS integration in the AEC industry requires systematic theories beyond integration technologies and deep applications of mathematical modeling methods, including spatio-temporal statistical modeling in GIS and 4D/nD BIM simulation and management. Opportunities of BIM-GIS integration are outlined as three hypotheses in the AEC industry for future research on the in-depth integration of BIM and GIS. BIM-GIS integration hypotheses enable more comprehensive applications through the life cycle of AEC projects. Link
HKUST Developing an evacuation evaluation model for offshore oil and gas platforms using BIM and agent-based model Journal 02/2018 Cheng, J.C.P., Tan, Y., Song, Y., Mei, Z., Gan, V.J.L., and Wang, X. Accidents on offshore oil and gas platforms (OOGPs) usually cause serious fatalities and financial losses considering the demanding environment where such platforms are located and the complicated topsides structure that the platforms have. Conducting evacuation planning on OOGPs is challenging. Computational tools are considered as a good way to plan evacuation by emergency simulation. However, the complex structure of OOGPs and various evacuation behaviors can weaken the advantages of computational simulation. Therefore, this study develops a simulation model for OOGPs to evaluate different evacuation plans to improve evacuation performance by integrating building information modeling (BIM) technology and agent-based model (ABM). The developed model consists of four parts: evacuation model input, simulation environment modeling, agent definition, and simulation and comparison. Necessary platform information is extracted from BIM and then used to model the simulation environment by integrating matrix model and network model. In addition to essential attributes, environment sensing and dynamic escape path planning functions are developed and assigned to agents in order to improve simulation performance. Total evacuation time for all agents on an offshore platform is used to evaluate the evacuation performance of each simulation. An example OOGP BIM topsides with different emergency scenarios is used to illustrate the developed evacuation evaluation model. The results show that the developed model can accurately simulate evacuation and improve evacuation performance on OOGPs. The developed model is also applicable to other industries such as the architecture, engineering, and construction industry, where there is an increasing demand for evacuation planning and simulation. Link
HKUST Automated optimization of steel reinforcement in RC building frames using building information modeling and hybrid genetic algorithm Journal 02/2018 Mangal, M., and Cheng, J.C.P. Design of steel reinforcement is an important and necessary task for designing reinforced concrete (RC) building structures. Currently, steel reinforcement design is performed manually or semi-automatically using computer software such as ETABS, with reference to building codes. These approaches are time consuming and sometimes error-prone. Recent advances in building information modeling (BIM) technology allow digital 3D BIM models to be leveraged for supporting different types of engineering analyses such as structural engineering design. With the aid of BIM technology, steel reinforcement design could be automated for fast, economical and error-free procedures. This paper presents a BIM-based framework using the developed three-stage hybrid genetic algorithm (GA) for automated optimization of steel reinforcement in RC frames. The methodology framework determines the selection and alignment of steel reinforcement bars in an RC building frame for the minimum steel reinforcement area, considering longitudinal tensile, longitudinal compressive and shear steel reinforcement. The first two stages optimize the longitudinal tensile and longitudinal compressive steel reinforcement while the third stage optimizes the shear steel reinforcement. International design code (BS8110) and buildability constraints are considered in the developed optimization framework. A BIM model in Industry Foundation Classes (IFC) is then automatically created to visualize the optimized steel reinforcement design results in 3D thereby facilitating design communication and generation of construction detailing drawings. A three-storey RC building frame is analyzed to check the applicability of the developed framework and its improvement over current design approaches. The results show that the developed methodology framework can minimize the steel reinforcement area quickly and accurately. Link