FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong


Below Information is provided by the Higher Insitutions signed MoU with CIC.



Date: From


Institution Title Type Date Author(s) Abstract Link
HKUST BIM-Based Daylighting and Energy Analysis on UG Hall 7 of HKUST Report 06/2016 Tianzhu QIN
Huan HE
BIM is a three-dimensional digital based model or technology with various project-related information inside. It is widely used in modern building industry. As buildings are consuming so much energy today, building energy save has become an important part of a project’s optimization. To achieve the purpose of saving and controlling a building's energy consumption by BIM related software prediction and adjustment and control is a simple and effective strategy.

This project aims to make energy-saving analyzes of STUDENT HALL 7 of HKUST, the main study method is: Revit 3D model—Green Building Studio energy analysis—solar panel analysis—PVGIS analysis—ECOTECT environmental analysis. Firstly obtained the three-dimensional model of Hall 7 through REVIT, and then send the model to Autodesk Green Building Studio to make energy consumption analysis, than make solar panel analysis of the building to find the energy save of panels, afterwards use PVGIS to check if the saving ratio is rational. What’s more, we also import the REVIT into ECOTECT to make further analysis.
HKUST Minimization of Construction Waste through BIM-based Clash Detection and Quantification Report 06/2016 Baoshan KUANG
Pik Kei LAM
Nowadays the construction industry is under pressure to explore effective and efficient techniques and tools to decrease its escalating waste generation. However, the current approaches, techniques and tools focus on separate projects on site and limited effort is invested to put attention on pre-construction waste generation related to design stages. Waste that is induced by improper design accounts for a major proportion of the total construction waste. Therefore, this report aims to develop a BIM-based approach in the aspect of waste minimization.

With the clash detection tool in Navisworks, this report demonstrates the clash classification, resolution and the corresponding waste generation of 3 pairs of general component models of a villa, which are architectural model vs. structural model, structural model vs. mechanical model and mechanical vs. plumbing model. Then, compare the result obtained with BIM and that estimated with the current waste factor approach and find out whether the BIM-based waste minimization can be better realized. Consequently, coordinating the models of each building components with clash detection enables efficient management of construction waste.
HKUST Developing a Facility Monitoring and Management Framework for Buildings Based on BIM and Sensor Technologies Report 06/2016 Fehong HE
Jiaying HUANG
Guishan LI
Building Information Modeling (BIM) is a global trend which is gaining significant benefits in facility management. It can reduce cost and time to address building management problems. Currently there is little information on how to realize the benefits from BIM with monitoring the real time state of a building environment.

In this thesis, a sensor based BIM framework is presented for building controlling and management. Building environment, space, equipment and safety information can be captured by unique sensors automatically instead of human detect. We have simulated the sensor installation in a popular BIM software Autodesk Revit, and use HKUST Hall 7 as an example model to perform our platform. We use SQL database to store all the sensor ID because it have a good linkage with BIM model. With the pragmatic sensor management plugin we can realize visualization interface in BIM model to management those sensors and get the specific information. After realize the real time data acquisition, we have researched some relative criteria and build an assessment system for further facility management.
HKUST Development of Approaches in Embodied Carbon of Buildings: From Construction Materials to Building Structural Design Thesis 08/2016 Jielong GAN Global warming has been considered as a major environmental challenge nowadays. Among various sources of anthropogenic greenhouse gas (GHG) emissions, the building sector is one of the major contributors to global warming, in which a substantial amount of the GHG emissions are embodied carbon from construction material production and transportation. Embodied carbon can account for 50% of the life cycle GHG emissions in buildings, and this percentage can become more significant for those buildings with shorter service life or higher energy efficiency. Therefore, reducing the embodied carbon in buildings is critically important and can help decrease the life cycle GHG emissions in buildings, thereby pushing human’s living environment towards a sustainable and low carbon future.

This thesis uses two approaches to reducing the embodied carbon in buildings. The first approach focuses on the construction material aspect and aims to reduce the embodied carbon from the manufacturing processes and transportations of construction materials. In this thesis, only the cement-based material (i.e., concrete) and quarried material (i.e., aggregate) are studied using the construction materials approach, as they account for more than 60% of the embodied carbon in a reinforced concrete (RC) building. Methods to the reduction of embodied carbon of aggregate and concrete are proposed, considering the feature of each material. Aggregate is very heavy and generates a large amount of emissions during transportation, therefore the aggregate study presents a mathematical model based on life cycle assessment (LCA) and multi-objective optimization (MOO) in order to plan the optimal amount of aggregate from different supply sources. The model can help stakeholders formulate sustainable material supply strategies that minimize the embodied carbon and material cost. For the concrete study, embodied carbon from concrete mix proportions is more important. Thus, a systematic embodied carbon quantification and mitigation framework is proposed for low carbon concrete mix design. The parameters that significantly affect the mix design and embodied carbon of concrete, namely the compressive strength class, the cement type, the supplementary cementitious materials (SCMs) and the maximum aggregate size, are considered. The proposed framework can be used to identify the low carbon mix design for concrete, and the results serves as a basis for reducing the embodied carbon emissions in buildings.

Another approach to reducing the embodied carbon in buildings considers different kinds of construction materials together, and focuses on building design aspect in order to minimize the total amounts of construction materials and embodied carbon in buildings. While the previous studies in this particular stream concentrated on low-rise building, they overlooked the analysis on high-rise buildings. However, the structural forms, construction materials and component designs in high-rise buildings are different from those in low-rise buildings, which can cause a large variability in the embodied carbon estimates. Therefore, an embodied carbon accounting methodology based on building information modeling (BIM) for high-rise buildings is proposed in this thesis, and relationships between embodied carbon and the critical parameters in high-rise building design are evaluated through BIM and CFD technologies. A 60-story composite core-outrigger building is designed based on the structure of a typical high-rise building in Hong Kong (i.e., Cheung Kong Center), and then used as a reference for the comparative studies. The results of embodied carbon are expressed in terms of carbon dioxide equivalent (CO2-e). The first comparative study focuses on the material procurement strategies. The embodied carbon in the reference building is evaluated with different assumptions for the material manufacturing processes, the amounts of recycled scrap and cement substitutes, and the transportation distance. It is found that structural steel and rebar from traditional blast furnace account for 76% of the embodied carbon in high-rise buildings. If a contractor chooses to use steel from electric arc furnace (with 100% recycled scrap as the feedstock), the embodied carbon of a high-rise building can be decreased by 60%. As for concrete, 10-20% embodied carbon reduction is achieved by using 35% fly ash (FA) or 75% ground granulated blast-furnace slag (GGBS) in mix design. Comparative studies are also carried out to determine the embodied carbon associated with different construction materials, building heights and structural forms. The 60-story composite core-outrigger reference building has a unitary embodied carbon of 557 kg CO2-e/m2 gross floor area (GFA). If the construction material changes to structural steel, the unitary embodied carbon increases to 759 kg CO2-e/m2 GFA, while the value of embodied carbon decreases to 537 kg CO2-e/m2 GFA if RC is used in construction. Core-frame structures are suitable for buildings of 40 stories or below, with the minimum embodied carbon at 525 kg CO2-e/m2 GFA. The optimal height range for core-outrigger structures is from 50-story to 70-story with 530 kg CO2-e/m2 GFA, whereas tubular structures are in the range between 70-story and 90-story at 540 kg CO2-e/m2 GFA. The results serve as a basis for more environmentally friendly building design, thereby improving our built environment towards a sustainable and low carbon future.
HKUST Automated dimensional quality assurance of full-scale precast concrete elements using laser scanning and BIM Journal 09/2016 Kim, M.-K., Wang, Q., Park, J.-W., Cheng, J.C.P., Chang, C.-C., and Sohn, H. This study presents a quality inspection technique for full-scale precast concrete elements using laser scanning and building information modeling (BIM). In today's construction industry, there is an increasing demand for modularization of prefabricated components and control of their dimensional quality during the fabrication and assembly stages. To meet these needs, this study develops a non-contact dimensional quality assurance (DQA) technique that automatically and precisely assesses the key quality criteria of full-scale precast concrete elements. First, a new coordinate transformation algorithm is developed taking into account the scales and complexities of real precast slabs so that the DQA technique can be fully automated. Second, a geometry matching method based on the Principal Component Analysis (PCA), which relates the as-built model constructed from the point cloud data to the corresponding as-designed BIM model, is utilized for precise dimension estimations of the actual precast slab. Third, an edge and corner extraction algorithm is advanced to tackle issues encountered in unexpected conditions, i.e. large incident angles and external steel bars being located near the edge of precast concrete elements. Lastly, a BIM-assisted storage and delivery approach for the obtained DQA data is proposed so that all relevant project stakeholders can share and update DQA data through the manufacture and assembly stages of the project. The applicability of the proposed DQA technique is validated through field tests on two full-scale precast slabs, and the associated implementation issues are discussed. Field test results reveal that the proposed DQA technique can achieve a measurement accuracy of around 3.0 mm for dimension and position estimations. Link
HKUST A state-of-the-art review on the integration of building information modelling (BIM) and geographic information system (GIS) Journal 02/2017 Liu, X., Wang, X., Wright, G., Cheng, J.C.P., Li, X., and Liu, R. The integration of Building Information Modeling (BIM) and Geographic Information System (GIS) has been identified as a promising but challenging topic to transform information towards the generation of knowledge and intelligence. Achievement of integrating these two concepts and enabling technologies will have a significant impact on solving problems in the civil, building and infrastructure sectors. However, since GIS and BIM were originally developed for different purposes, numerous challenges are being encountered for the integration. To better understand these two different domains, this paper reviews the development and dissimilarities of GIS and BIM, the existing integration methods, and investigates their potential in various applications. This study shows that the integration methods are developed for various reasons and aim to solve different problems. The parameters influencing the choice can be summarized and named as “EEEF” criteria: effectiveness, extensibility, effort, and flexibility. Compared with other methods, semantic web technologies provide a promising and generalized integration solution. However, the biggest challenges of this method are the large efforts required at early stage and the isolated development of ontologies within one particular domain. The isolation problem also applies to other methods. Therefore, openness is the key of the success of BIM and GIS integration. Link